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Diffusive motion in an externally driven potential is considered. It is shown that the distribution of work
required to drive the system from an initial equilibrium state to another is Gaussian for slow but finite driving.
Our result is obtained by projection method techniques exploiting a small parameter defined as the switching
rate between the two states of the system. The exact solution for a simple model system shows that such an
expansion may fail in higher orders, since the mean and the variance following from the exact distribution
show nonanalytic behavior.
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In macroscopic thermodynamics, the workW spent in
changing the state of a system at constant temperatureT
obeys

Wù DF, s1d

which is one version of the second law whereDF is the
difference in free energy of the final and the initial equilib-
rium state. As the system gets smaller, thermal fluctuations
play an increasingly relevant role. Hence this work acquires
a stochastic contribution, i.e., the work follows a distribution
function PsWd. The shape of this function depends on how
the system is driven. If this change is induced by the time
variation of an external control parameterlstd, the distribu-
tion PsWd becomes a functional oflstd.

Such distributions have recently become accessible ex-
perimentally for systems with only a few degrees of freedom
diffusing in a thermal environment under the influence of an
externally controlled potential. Paradigmatic examples in-
clude dragging a colloid particle by an optical tweezer
through a viscous fluid[1,2] and the forced unfolding of
RNA hairpins [3]. In both cases some realizations of the
process showW,DF. Slightly overstated, such findings
have been called violations of the second law[1]. In a more
conservative interpretation of the second law for such meso-
scopic systems, the average work should and does still obey

W; E
−`

+`

dW PsWdWù DF. s2d

Obviously, the distributionPsWd is of paramount impor-
tance for a better understanding of isothermal stochastic dy-
namics. Exact statements, however, aboutPsWd are scarce.
In 1997, Jarzynski has shown under rather mild assumptions
that the distributionPsWd obeys an integral constraint

E
−`

+`

dW PsWde−bW = e−bDF s3d

for any external protocollstd [4–6]. Here,b;1/kBT with
Boltzmann’s constantkB. Since this remarkable relation al-
lows one to extract equilibrium free energy differences from
measuring or calculating the work distribution in nonequilib-
rium experiments or simulations[25], it has found wide-

spread applications recently[3,7–11]. The statistical and con-
vergence properties of this nonlinear average deserve
particular attention[12–14].

For time-dependent quadratic potentials, i.e., linear sto-
chastic equations of motion,PsWd can easily derive to be
Gaussian[15]. Jarzynski’s relation then implies that the
meanW and the variances2 are necessarily related by[4]

W= DF + bs2/2. s4d

For these potentials, the Gaussian nature holds independently
on the speed of the driving, i.e., independently of how far the
system is from equilibrium.

The purpose of this paper is to add a third general state-
ment aboutPsWd to this list of exact results. We will show
that this distribution becomes a Gaussian for slow but finite
driving even if the equations of motion are nonlinear. Since
our approach is constructive, it yields an explicit algorithm
of how to obtain the meanW and the variances2 of this
Gaussian distribution. In the quasistatic limit of infinitely
slow external manipulation, this Gaussian reduces toPsWd
=dsW−DFd.

A Gaussian character of the distributionPsWd near equi-
librium seems to be expected or taken for granted in the
recent literature[3,4,8,12,16]. Closer scrutiny of the refer-
ences usually cited for this assumption, if any are cited at all,
however, reveals that they do not provide an explicit proof of
this statement. The often cited papers by Hermans[17] and
Wood et al. [18] explicitly assume a Gaussian shape. Allud-
ing in a more general way to an Onsager-Machlup functional
[19] also fails, since this Gaussian functional is derived for
linear stochastic equations of motion. The presumably most
promising case to date in favor of a Gaussian distribution
suggests to invoke the central limit theorem for the incre-
ments of work[20]. However, without translating this pro-
posal into a definite calculation, which seems to be nontrivial
for time-dependent potentials, this argument is not a clear-cut
proof yet, let alone does it give an expression for mean and
variance of this putative Gaussian.

Based on this unsatisfying state of affairs concerning such
a fundamental issue, we believe that a constructive deriva-
tion of the Gaussian nature of this distribution for finite but
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slow driving is indeed called for as a step towards a compre-
hensive theory of isothermal stochastic dynamics.

For the derivation we consider a finite classical system
coupled to a heat reservoir of constant temperature. Let then
x;sx0,… ,xnd be the state of the system with energyVlsxd
wherel is an externally controlled parameter. The stochastic
dynamics is governed by the Langevin equations[21]

ẋi = − mi j
] Vl

] xj
+ histd, s5d

wheremi j are the mobility coefficients[26] and histd is the
thermal noise representing the heat bath with

khistdl = 0 and khistdh jst8dl =
2

b
mi jdst − t8d, s6d

where k¯l denotes the ensemble average. We describe the
continuous process of switching the system from an initial
stateflst=0d=0g to a final stateflst= tsd=1g by a protocol
lstd, over a total switching timets. Without loss of general-

ity, we setlstd; t / ts and hence a constant switching ratel̇
= ts

−1 [4].
We now consider an ensemble of infinitely many realiza-

tions of this Markov process, each evolving stochastically
according to Eq.(5). The normalized distribution of this en-
semble in phase spacefsx ,td obeys a Fokker-Planck equation
[21],

]t f = L̂lf with L̂l ;
]

] xi
mijF ] Vl

] xj
+

1

b

]

] xj
G , s7d

equivalent to the Langevin equations(5). This introduces the

(throughl time-dependent) Fokker-Planck operatorL̂l. The
stationary solution of Eq.(7) for fixed l is the equilibrium
distribution

fl
eqsxd ; e−bVlsxdYE dx8e−bVlsx8d. s8d

The total work performed along one particular trajectory
xstd up to timet is the time integral[4,22]

Wfxstd,tg ; E
0

t

dt8l̇
] Vl

] l
(xst8d). s9d

We can now compose a combined stochastic process consist-
ing of hx ,Wj as [15]

ẋi = − mi j
] Vl

] xj
+ histd, s10d

Ẇ= l̇
] Vl

] l
. s11d

Note that the equation of motion forẆ does not have an
independent noise but is stochastic through thex dependence
of Vl. The joint probability distribution functionpsx ,W,td
then obeys a Fokker-Planck equation

]tp = fL̂l + l̇L̂l
Wgp, s12d

where

L̂l
W ; −

] Vl

] l

]

] W
s13d

represents a drift term of the work. The reduced probability
distribution of the workPsW,td can be obtained by integrat-
ing out x as

PsW,td =E dx psx,W,td. s14d

Since we start the process out of thermal equilibrium, thex
are initially distributed according to the canonical distribu-
tion and therefore the initial condition is

psx,W,0d = f0
eqsxddsWd. s15d

As our main theoretical tool we introduce a projectorP̂l

acting on a functionfsx ,W,td such that

P̂lf ; fl
eqE dx8fsx8,W,td. s16d

Note that

L̂lP̂lf = P̂lL̂lf = 0. s17d

The first statement is evident from definition(16) and the

fact thatfl
eq is in the null space ofL̂l. The second conclusion

follows whenf is expanded in terms of eigenfunctions of

L̂l. Then the Fokker-Planck operatorL̂l cancels the eigen-
function to eigenvalue 0, which in fact isfl

eq, whereas the
projector annihilates all other eigenfunctions corresponding
to higher eigenvalues.

The other important property of the projectorP̂l, which
distinguishes it from the usual application to the adiabatic
elimination of fast variables[21], is that it does not commute
with the time derivative but rather leads to

f]t,P̂lg ; ]tP̂l − P̂l]t = − l̇bSlP̂l, s18d

where we define

Sl ;
] Vl

] l
−K ] Vl

] l
L

l

. s19d

The equilibrium ensemble averagek¯ll is defined as

kfll ;E dx fl
eqsxdfsx,td. s20d

We can now expand the joint probabilitypsx ,W,td for

small l̇, which corresponds to a separation of time scales
[23]. The slow time scale isl= t / ts. The fast time scale,
which we do not need explicitly, is determined by the intrin-
sic relaxation processes. As the time derivative transforms

according to]t→ l̇]l, switching to the slow time scale Eq.
(12) becomes
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]lp = fl̇−1L̂l + L̂l
Wgp. s21d

By using the projectorP̂l we decompose the distribution
function p=p0+p1 into

p0sx,W,ld ; P̂lp = fl
eqsxdPsW,ld s22d

and

p1sx,W,ld ; s1 − P̂ldp. s23d

We applyP̂l, respectivelys1−P̂ld, to Eq. (21) and keep in
mind both Eq.(17) and the commutator(18). We finally get
the two coupled differential equations,

]lp0 = Âl
0p0 + Âl

0p1 − bSlp0, s24d

]lp1 = fl̇−1L̂l + Âl
1gp1 + Âl

1p0 + bSlp0, s25d

where we abbreviateÂl
0;P̂lL̂l

W and Âl
1;s1−P̂ldL̂l

W.

In this form, an expansion inl̇ becomes possible. In low-

est ordersl̇→0d, Eq. (25) implies L̂lp1=0. Sincep1 is or-

thogonal to the null space ofL̂l by definition (23), p1=0
follows. For a solution of Eq.(24) we explicitly calculate

Âl
0fl

eq= − fl
eqE dx

] Vl

] l
fl
eq ]

] W
= − fl

eqK ] Vl

] l
L

l

]

] W
.

s26d

Using this and Eq.(22) we finally obtain

] P

] l
= −K ] Vl

] l
L

l

] P

] W
s27d

for the distribution of the workPsW,ld. The solution of this
equation is PsWd=dsW−DFd with the initial condition
PsW,0d=dsWd following from Eq.(15), where we recognize
DF=e0

1dlk]Vl /]lll as the change in free energy of the en-

tire process. We thus have recovered forl̇→0 the quasistatic
limit as expected.

To first order inl̇ we get from Eq.(25)

p1 = − l̇L̂l
−1fÂl

1 + bSlgp0. s28d

Putting this back into Eq.(24) we get after a straightforward
calculation a diffusion-type equation forPsW,ld in the form

] P

] l
= − FK ] Vl

] l
L

l

+ l̇bS̃lG ] P

] W
+ l̇S̃l

]2P

] W2 , s29d

where

S̃l ; −E dx
] Vl

] l
L̂l

−1Slfl
eq. s30d

The solution is a Gaussian

PsWd =
1

Î2ps2
expF−

sW− Wd2

2s2 G s31d

with variances2=2l̇ e0
1dl S̃l and mean

W=E
0

1

dlFK ] Vl

] l
L

l

+ l̇bS̃lG = DF +
b

2
s2. s32d

This is the central result of the present paper[27]. First, it
proves that the distribution of the work in isothermal non-
equilibrium processes is Gaussian in the near-equilibrium re-
gime. Second, we recover independently from Jarzynski’s
relation (3) the constraint that the mean and variance are
connected according to Eq.(4). Third, it yields an explicit
algorithm of how to calculate these quantities.

For an assessment of the range of validity of this approxi-
mation, we recall that it is based essentially on a separation
of time scales. Hence the Gaussian distribution will be a

good approximation as long asl̇t!1, wheret is an intrinsic
relaxation time.

As an example, we illustrate our approach for a simple
one-dimensional case, where we can compare our expansion
with an exact solution[15]. We consider a colloidal particle
at positionx with mobility m trapped by an optical tweezer
whose centerysld is moved at constant speedv through a
viscous fluid (see Fig. 1). The potential of the trap is as-
sumed to be harmonic near the focal point,Vlsxd=sk/2dfx
−ysldg2, with effective strengthk. In this case, the free en-
ergy is independent ofysld. For the two states, we choose
with ysl=0d=0 and ysl=1d=L two positions of the trap.

The switching rate becomesl̇=v /L, while the relaxation
time is t=1/mk.

Within our scheme, we first have to calculateCl

= L̂l
−1Slfl

eq in Eq. (30) which amounts to solving the inhomo-
geneous differential equation

L̂lCl = Slfl
eq, s33d

wherel only appears as a parameter. This is easily solved as
Clsxd= fl

eqsxdLx/m and thus the average work becomes

W= L2kl̇t. s34d

Of course, for this harmonic potential, the distributionPsWd
is Gaussian at any driving[15]. The exact result for the mean

W as a function ofl̇ reads

FIG. 1. Scheme of the experiment of Ref.[1]. A colloidal par-
ticle at positionxstd is dragged by an optical tweezer with focus at
ysld=Ll through a viscous fluid. The effective potential is har-
monic with a spring constantk.
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W= L2kfl̇t − l̇2t2s1 − e−1/l̇tdg , s35d

which agrees to first order inl̇ with Eq. (34) as expected.
The exact expression(35) points to an interesting property

which seems not to have been discussed yet in the context of
stochastic dynamics[28]. The exponentially small last term
shows that the average work is nonanalytic inl̇. We expect
that if our expansion of Eq.(25) was extended to the next
order, some signature of this nonanalyticity should show up.
Therefore the approach to equilibrium(or the deviation from
equilibrium) even in this almost trivial case is somewhat
subtle.

It is instructive to note that the Gaussian distribution for
weak driving also holds if the stochastic dynamics(5) is
replaced by a deterministic Nosé-Hoover thermostated dy-
namics where the heat bath is simulated by a pseudofriction
coefficientz [24]. The dynamics of the system with Hamil-
tonianHl;p2/2m+Vl now reads

q̇i =
pi

m
, ṗi = −

] Vl

] qi
− zpi, and ż =

1

t2Fp2b

mn
− 1G , s36d

for n degrees of freedom. The time-evolution operator be-
comes

L̂l = −
]

] qi
q̇i −

]

] pi
ṗi −

]

] z
ż s37d

with stationary solution fl
eq~expf−bHl−sn/2dt2z2g. Our

derivation of Eq.(29) holds in this case as well since the
crucial ingredient for our proof is the existence of a time-

evolution operatorL̂l and a projectorP̂l into the null space

of L̂l such that Eq.(17) remains valid.
In summary, we have shown for general diffusive systems

that the distribution of work required to drive the system
from an initial equilibrium state to another is a Gaussian for
slow but finite driving. Its mean and variance can be ob-
tained from solving an inhomogeneous differential equation
involving the Fokker-Planck operator. As an exactly solvable
case shows, these quantities are nonanalytic in the switching
rate. This result indicates that in general calculating the next
order correction to the Gaussian derived here may face fun-
damental difficulties.

Stimulating discussions with O. Braun and R. Finken are
gratefully acknowledged, as well as valuable hints and com-
ments by H. Spohn.
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